

LH28F128BFHT-PBTL75A

Flash Memory 16Mbit (8Mbitx16)

(Model Number: LHF12F17)

Spec. Issue Date: June 7, 2004

SPEC No.	FN	1046	012	
ISSUE:	Jun.	7,	2004	

To;

PRELIMINARY SPECIFICATIONS
Product Type 128 Mbit Flash Memory
L H 2 8 F 1 2 8 B F H T — P B T L 7 5 A
Model No. (LHF12F17)
This device specification is subject to change without notice. * This specifications contains 32 pages including the cover and appendix.
CUSTOMERS ACCEPTANCE
DATE:
BY: PRESENTED
BY: Mavali M. NAWAKI Dept. General Manager
REVIEWED BY: PREPARED BY:

Product Development Dept. II System-Flash Division Integrated Circuits Group SHARP CORPORATION

SHARP

LHF12F17

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE	PAGE
56-Lead TSOP (Normal Bend) Pinout 3	1 Electrical Specifications
Pin Descriptions	1.1 Absolute Maximum Ratings
Simultaneous Operation Modes Allowed with 6 Planes	1.2 Operating Conditions
Memory Map	1.2.1 Capacitance
Identifier Codes and OTP Address	1.2.2 AC Input/Output Test Conditions
for Read Operation	1.2.3 DC Characteristics
OTP Block Address Map for OTP Program 10	1.2.4 AC Characteristics
Bus Operation	- Read-Only Operations
Command Definitions	- Write Operations
Functions of Block Lock and Block Lock-Down 14	1.2.6 Reset Operations
Block Locking State Transitions upon Command Write	1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance
Block Locking State Transitions upon WP#/ACC Transition	O11 Trogram refrontance
Status Register Definition	
Extended Status Register Definition	

2

LHF12F17

LH28F128BFHT-PBTL75A 128Mbit (8Mbit×16) Page Mode Dual Work Flash MEMORY

- 128-M density with 16-bit I/O Interface
- High Performance Reads
 - 75/25ns 8-Word Page Mode
- 6-Plane Dual Work Operation
 - Read operations are available during Block Erase or (Page Buffer) Program between two different Planes
 - Plane Architecture:
 16M, 24M, 24M, 24M, 24M, 16M
- Low Power Operation
 - 2.7V Read and Write Operations
 - \bullet $V_{\mbox{\footnotesize{CCQ}}}$ for Input/Output Power Supply Isolation
 - Automatic Power Savings Mode reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 - 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- High Performance Program with Page Buffer
 - 16-Word Page Buffer
 - 5µs/Word (Typ.) at WP#/ACC=9.5V
- Operating Temperature -40° C to $+85^{\circ}$ C
- CMOS Process (P-type silicon substrate)

- Flexible Blocking Architecture
 - Eight 4-Kword Parameter Blocks
 - Two-hundred and fifty-five 32-Kword Main Blocks
 - Bottom Parameter Location
- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Block Erase, Full Chip Erase, (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 11µs/Word (Typ.) Programming
 - 9.5V No Glue Logic 9μs/Word (Typ.) Production Programming and 0.8s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 56-Lead TSOP (Normal Bend)
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product, which is 6-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as an unique number.

* ETOX is a trademark of Intel Corporation.

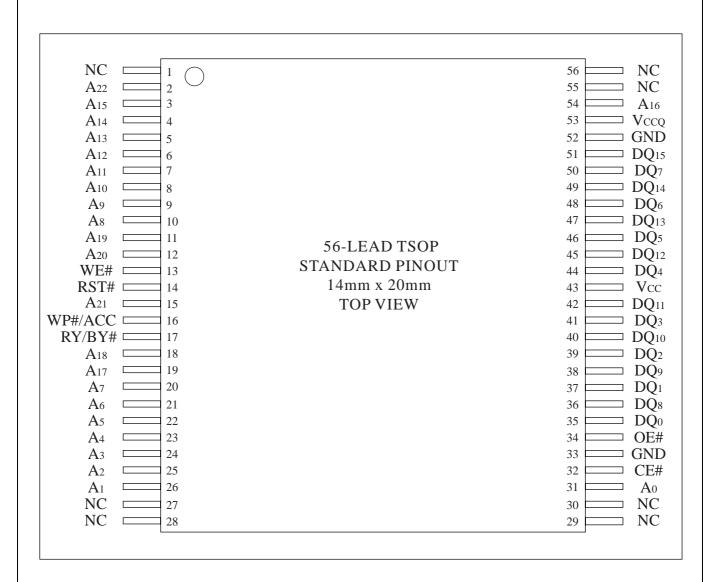


Figure 1. 56-Lead TSOP (Normal Bend) Pinout

Table 1. Pin Descriptions

Symbol	Туре	Name and Function
A ₂₂ -A ₀	INPUT	ADDRESS INPUTS: Inputs for addresses.
DQ ₁₅ -DQ ₀	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code and identifier code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).
WP#/ACC	INPUT/ SUPPLY	WRITE PROTECT: When WP#/ACC is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP#/ACC is V_{IH} , lock-down is disabled. Applying 9.5V±0.5V to WP#/ACC provides fast erasing or fast programming mode. In this mode, WP#/ACC is power supply pin. Applying 9.5V±0.5V to WP#/ACC during erase/program can only be done for a maximum of 1,000 cycles on each block. WP#/ACC may be connected to 9.5V±0.5V for a total of 80 hours maximum. Use of this pin at 9.5V+0.5V beyond these limits may reduce block cycling capability or cause permanent damage.
RY/BY#	OPEN DRAIN OUTPUT	READY/BUSY#: Indicates the status of the internal WSM (Write State Machine). When low, WSM is performing an internal operation (block erase, full chip erase, (page buffer) program or OTP program). RY/BY#-High Z indicates that the WSM is ready for new commands, block erase is suspended and (page buffer) program is inactive, (page buffer) program is suspended, or the device is in reset mode.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.3V): With $V_{CC} \le V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (2.7V-3.3V): Power supply for all input/output pins.
GND	SUPPLY	GROUND: Do not float any ground pins.
NC		NO CONNECT: Lead is not internally connected; it may be driven or floated.

5

THEN THE MODES ALLOWED IN THE OTHER PLANE IS: IF ONE Block Page Word OTP Read Read Read Read Block Full Chip Program PLANE IS: Buffer Erase ID/OTP Status Program Program Erase Erase Suspend Array Query Program Suspend X Read Array X X X X X X X Read ID/OTP X X X X X X X X X Read Status X X X X X \mathbf{X} X X X X X Read Query X X X X X X X X X Word Program X X X X X Page Buffer X X X X X Program **OTP Program** X X **Block Erase** X X X Full Chip Erase X Program X X X X X Suspend **Block Erase** X X X X X X X Suspend

Table 2. Simultaneous Operation Modes Allowed with 6 Planes (1, 2)

NOTES:

SHARP

- 1. "X" denotes the operation available.
- 2. Dual Work Restrictions:

Status register reflects WSM (Write State Machine) state.

Only one plane can be erased or programmed at a time - no command queuing.

Commands must be written to an address within the block targeted by that command.

		$[A_{22}-A_0]$
1	32-Kword Block 86	278000H - 27FFFFH
	32-Kword Block 85	270000H - 277FFFH
1	32-Kword Block 84	268000H - 26FFFFH
1	32-Kword Block 83	260000H - 267FFFH
1	32-Kword Block 82	258000H - 25FFFFH
1	32-Kword Block 81	250000H - 257FFFH 248000H - 24FFFFH
1 .	32-Kword Block 80	248000H - 24FFFFH 240000H - 247FFFH
	32-Kword Block 79	238000H - 23FFFFH
	32-Kword Block 78	230000H - 237FFFH
	32-Kword Block 77	
	32-Kword Block 76	228000H - 22FFFFH
	32-Kword Block 75	220000H - 227FFFH
	32-Kword Block 74	218000H - 21FFFFH
	32-Kword Block 73	210000H - 217FFFH
	32-Kword Block 72	208000H - 20FFFFH 200000H - 207FFFH
	32-Kword Block 71	
	32-Kword Block 70	1F8000H - 1FFFFFH
	32-Kword Block 69	1F0000H - 1F7FFFH 1E8000H - 1EFFFFH
	32-Kword Block 68	
	32-Kword Block 67	1E0000H - 1E7FFFH
	32-Kword Block 66	1D8000H - 1DFFFFH
	32-Kword Block 65	1D0000H - 1D7FFFH
	32-Kword Block 64	1C8000H - 1CFFFFH 1C0000H - 1C7FFFH
	32-Kword Block 63	
	32-Kword Block 62	1B8000H - 1BFFFFH
1_	32-Kword Block 61	1B0000H - 1B7FFFH 1A8000H - 1AFFFFH
PLANE1	32-Kword Block 60	
	32-Kword Block 59	1A0000H - 1A7FFFH 198000H - 19FFFFH
ΙĄ	32-Kword Block 58	190000H - 197FFFH
\mathbf{F}	32-Kword Block 57	
1	32-Kword Block 56	188000H - 18FFFFH 180000H - 187FFFH
	32-Kword Block 55	178000H - 17FFFH
	32-Kword Block 54	170000H - 177FFFH
	32-Kword Block 53	168000H - 16FFFFH
	32-Kword Block 52	160000H - 167FFFH
	32-Kword Block 51	158000H - 15FFFFH
	32-Kword Block 50	150000H - 157FFFH
	32-Kword Block 49 32-Kword Block 48	148000H - 137FFFH
		140000H - 147FFFH
	32-Kword Block 47	138000H - 13FFFFH
	32-Kword Block 46 32-Kword Block 45	130000H - 137FFFH
	32-Kword Block 45	128000H - 137FFFH
	32-Kword Block 44 32-Kword Block 43	120000H - 127FFFH
	32-Kword Block 43	118000H - 127FFFH
	32-Kword Block 42	110000H - 117FFFH
	32-Kword Block 41	108000H - 117FFFH
	32-Kword Block 40	100000H - 107FFFH
	32-Kworu Block 39	100000H - 10/FFFH

 $[A_{22}-A_0]$

		- 22 0-
	32-Kword Block 38	0F8000H - 0FFFFFH
	32-Kword Block 37	0F0000H - 0F7FFFH
	32-Kword Block 36	0E8000H - 0EFFFFH
	32-Kword Block 35	0E0000H - 0E7FFFH
	32-Kword Block 34	0D8000H - 0DFFFFH
	32-Kword Block 33	0D0000H - 0D7FFFH
	32-Kword Block 32	0C8000H - 0CFFFFH
	32-Kword Block 31	0C0000H - 0C7FFFH
	32-Kword Block 30	0B8000H - 0BFFFFH
	32-Kword Block 29	0B0000H - 0B7FFFH
	32-Kword Block 28	0A8000H - 0AFFFFH
	32-Kword Block 27	0A0000H - 0A7FFFH
	32-Kword Block 26	098000H - 09FFFFH
	32-Kword Block 25	090000H - 097FFFH
	32-Kword Block 24	088000H - 08FFFFH
	32-Kword Block 23	080000H - 087FFFH
	32-Kword Block 22	078000H - 07FFFFH
PLANE0	32-Kword Block 21	070000H - 077FFFH
匕	32-Kword Block 20	068000H - 06FFFFH
14 [32-Kword Block 19	060000H - 067FFFH
ľ	32-Kword Block 18	058000H - 05FFFFH
14	32-Kword Block 17	050000H - 057FFFH
	32-Kword Block 16	048000H - 04FFFFH
	32-Kword Block 15	040000H - 047FFFH
	32-Kword Block 14	038000H - 03FFFFH
	32-Kword Block 13	030000H - 037FFFH
	32-Kword Block 12	028000H - 02FFFFH
	32-Kword Block 11	020000H - 027FFFH
	32-Kword Block 10	018000H - 01FFFFH
	32-Kword Block 9	010000H - 017FFFH
	32-Kword Block 8	008000H - 00FFFFH
	4-Kword Block 7	007000H - 007FFFH
	4-Kword Block 6	006000H - 006FFFH
	4-Kword Block 5	005000H - 005FFFH
	4-Kword Block 4	004000H - 004FFFH
	4-Kword Block 3	003000H - 003FFFH
	4-Kword Block 2	002000H - 002FFFH
	4-Kword Block 1	001000H - 001FFFH
	4-Kword Block 0	000000H - 000FFFH
	4-Kword Block 0	0000000H - 000FFF

PLANE1 : 24 Mbit PLANE0 : 16 Mbit

Figure 2.1. Memory Map (Bottom Parameter, Plane 0 and Plane 1)

		[A A]				FA A 3
		$[A_{22}-A_0]$				$[A_{22}-A_0]$
	32-Kword Block 182	7578000H - 57FFFFH	Г		32-Kword Block 134	3F8000H - 3FFFFFH
-	32-Kword Block 181	570000H - 577FFFH		-	32-Kword Block 133	3F0000H - 3F7FFFH
	32-Kword Block 180	568000H - 56FFFFH		1	32-Kword Block 132	3E8000H - 3EFFFFH
	32-Kword Block 179	560000H - 567FFFH		1	32-Kword Block 131	3E0000H - 3E7FFFH
	32-Kword Block 178	558000H - 55FFFFH		İ	32-Kword Block 130	3D8000H - 3DFFFFH
'	32-Kword Block 177	550000H - 557FFFH		i	32-Kword Block 129	3D0000H - 3D7FFFH
	32-Kword Block 176	548000H - 54FFFFH		İ	32-Kword Block 128	3C8000H - 3CFFFFH
	32-Kword Block 175	540000H - 547FFFH		i	32-Kword Block 127	3C0000H - 3C7FFFH
	32-Kword Block 174	538000H - 53FFFFH			32-Kword Block 126	3B8000H - 3BFFFFH
	32-Kword Block 173	530000H - 537FFFH			32-Kword Block 125	3B0000H - 3B7FFFH
	32-Kword Block 172	528000H - 52FFFFH			32-Kword Block 124	3A8000H - 3AFFFFH
l .	32-Kword Block 171	520000H - 527FFFH			32-Kword Block 123	3A0000H - 3A7FFFH
	32-Kword Block 170	518000H - 51FFFFH			32-Kword Block 122	398000H - 39FFFFH
	32-Kword Block 169	510000H - 517FFFH			32-Kword Block 121	390000H - 397FFFH
.	32-Kword Block 168	508000H - 50FFFFH		- 1	32-Kword Block 120	388000H - 38FFFFH
	32-Kword Block 167	500000H - 507FFFH			32-Kword Block 119	380000H - 387FFFH
	32-Kword Block 166	4F8000H - 4FFFFFH 4F0000H - 4F7FFFH		-	32-Kword Block 118	378000H - 37FFFFH
	32-Kword Block 165	4E8000H - 4EFFFFH		-	32-Kword Block 117	370000H - 377FFFH
	32-Kword Block 164	4E0000H - 4E7FFFH		-	32-Kword Block 116	368000H - 36FFFFH
	32-Kword Block 163 32-Kword Block 162	4D8000H - 4DFFFFH		-	32-Kword Block 115 32-Kword Block 114	360000H - 367FFFH
	32-Kword Block 161	4D0000H - 4D7FFFH		-	32-Kword Block 113	358000H - 35FFFFH 350000H - 357FFFH
	32-Kword Block 160	4C8000H - 4CFFFFH		-	32-Kword Block 113	348000H - 34FFFFH
	32-Kword Block 159	4C0000H - 4C7FFFH			32-Kword Block 111	340000H - 347FFFH
	32-Kword Block 158	4B8000H - 4BFFFFH			32-Kword Block 110	338000H - 33FFFFH
	32-Kword Block 157	4B0000H - 4B7FFFH			32-Kword Block 109	330000H - 337FFFH
33	32-Kword Block 156	4A8000H - 4AFFFFH		\mathbf{Z}	32-Kword Block 108	328000H - 32FFFFH
PLANE3	32-Kword Block 155	4A0000H - 4A7FFFH		PLANE2	32-Kword Block 107	320000H - 327FFFH
Æ	32-Kword Block 154	498000H - 49FFFFH		7 1	32-Kword Block 106	318000H - 31FFFFH
Ľ	32-Kword Block 153	490000H - 497FFFH		ا ئے	32-Kword Block 105	310000H - 317FFFH
F	32-Kword Block 152	488000H - 48FFFFH		ᅩ	32-Kword Block 104	308000H - 30FFFFH
	32-Kword Block 151	480000H - 487FFFH			32-Kword Block 103	300000H - 307FFFH
	32-Kword Block 150	478000H - 47FFFFH			32-Kword Block 102	2F8000H - 2FFFFFH
	32-Kword Block 149	470000H - 477FFFH			32-Kword Block 101	2F0000H - 2F7FFFH
	32-Kword Block 148	468000H - 46FFFFH			32-Kword Block 100	2E8000H - 2EFFFFH
	32-Kword Block 147	460000H - 467FFFH		- 1	32-Kword Block 99	2E0000H - 2E7FFFH
	32-Kword Block 146	458000H - 45FFFFH		-	32-Kword Block 98	2D8000H - 2DFFFFH
	32-Kword Block 145 32-Kword Block 144	450000H - 457FFFH		- 1	32-Kword Block 97 32-Kword Block 96	2D0000H - 2D7FFFH
	32-Kword Block 144 32-Kword Block 143	448000H - 44FFFFH 440000H - 447FFFH		1	32-Kword Block 95	2C8000H - 2CFFFFH
	32-Kword Block 143	438000H - 43FFFFH		1	32-Kword Block 94	2C0000H - 2C7FFFH
	32-Kword Block 141	430000H - 437FFFH		1	32-Kword Block 93	2B8000H - 2BFFFFH 2B0000H - 2B7FFFH
	32-Kword Block 140	428000H - 42FFFFH		- 1	32-Kword Block 93	2A8000H - 2AFFFFH
	32-Kword Block 139	420000H - 427FFFH		l	32-Kword Block 91	2A0000H - 2A7FFFH 2A0000H - 2A7FFFH
	32-Kword Block 138	418000H - 41FFFFH			32-Kword Block 90	298000H - 29FFFFH
	32-Kword Block 137	410000H - 417FFFH		İ	32-Kword Block 89	290000H - 297FFFH
	32-Kword Block 136	408000H - 40FFFFH		İ	32-Kword Block 88	288000H - 28FFFFH
	32-Kword Block 135	400000H - 407FFFH			32-Kword Block 87	280000H - 287FFFH
			_			

PLANE3: 24 Mbit

Figure 2.2. Memory Map (Bottom Parameter, Plane 2 and Plane 3)

PLANE2: 24 Mbit

SHARP

8

					$[A_{22}-A_0]$
				22 W 1 D1 1 220	=
				32-Kword Block 230 32-Kword Block 229	6F8000H - 6FFFFFH 6F0000H - 6F7FFFH
				32-Kword Block 229	6E8000H - 6EFFFFH
				32-Kword Block 227	6E0000H - 6E7FFFH
				32-Kword Block 226	6D8000H - 6DFFFFH
				32-Kword Block 225	6D0000H - 6D7FFFH
				32-Kword Block 224	6C8000H - 6CFFFFH
				32-Kword Block 223	6C0000H - 6C7FFFH
				32-Kword Block 222	6B8000H - 6BFFFFH
				32-Kword Block 221	6B0000H - 6B7FFFH
				32-Kword Block 220 32-Kword Block 219	6A8000H - 6AFFFFH 6A0000H - 6A7FFFH
				32-Kword Block 218	698000H - 69FFFFH
				32-Kword Block 217	690000H - 697FFFH
		$[A_{22}-A_0]$		32-Kword Block 216	688000H - 68FFFFH
		1 22 03		32-Kword Block 215	680000H - 687FFFH
	32-Kword Block 262	7F8000H - 7FFFFFH		32-Kword Block 214	678000H - 67FFFFH
	32-Kword Block 261	7F0000H - 7F7FFFH		32-Kword Block 213	670000H - 677FFFH
L	32-Kword Block 260	7E8000H - 7EFFFFH		32-Kword Block 212	668000H - 66FFFFH 660000H - 667FFFH
-	32-Kword Block 259	7E0000H - 7E7FFFH		32-Kword Block 211 32-Kword Block 210	658000H - 65FFFFH
F	32-Kword Block 258 32-Kword Block 257	7D8000H - 7DFFFFH 7D0000H - 7D7FFFH		32-Kword Block 210	650000H - 657FFFH
H	32-Kword Block 257	7C8000H - 7CFFFFH		32-Kword Block 208	648000H - 64FFFFH
H	32-Kword Block 255	7C0000H - 7C7FFFH		32-Kword Block 207	640000H - 647FFFH
	32-Kword Block 254	7B8000H - 7BFFFFH		32-Kword Block 206	638000H - 63FFFFH
	32-Kword Block 253	7B0000H - 7B7FFFH		32-Kword Block 205	630000H - 637FFFH
	32-Kword Block 252	7A8000H - 7AFFFFH		32-Kword Block 204	628000H - 62FFFFH
L	32-Kword Block 251	7A0000H - 7A7FFFH		32-Kword Block 203	620000H - 627FFFH 618000H - 61FFFFH
	32-Kword Block 250	798000H - 79FFFFH	l l	32-Kword Block 202 32-Kword Block 201	610000H - 617FFFH
畄上	32-Kword Block 249 32-Kword Block 248	790000H - 797FFFH 788000H - 78FFFFH		32-Kword Block 200	608000H - 60FFFFH
ろ上	32-Kword Block 247	780000H - 787FFFH	3	32-Kword Block 199	600000H - 607FFFH
PLANE	32-Kword Block 246	778000H - 77FFFFH	PLANE4	32-Kword Block 198	5F8000H - 5FFFFFH
교 [32-Kword Block 245	770000H - 777FFFH	[2]	32-Kword Block 197	5F0000H - 5F7FFFH
L	32-Kword Block 244	768000H - 76FFFFH		32-Kword Block 196	5E8000H - 5EFFFFH
L	32-Kword Block 243	760000H - 767FFFH		32-Kword Block 195	5E0000H - 5E7FFFH
L	32-Kword Block 242	758000H - 75FFFFH		32-Kword Block 194 32-Kword Block 193	5D8000H - 5DFFFFH 5D0000H - 5D7FFFH
H	32-Kword Block 241	750000H - 757FFFH 748000H - 74FFFFH		32-Kword Block 193	5C8000H - 5CFFFFH
- 1	32-Kword Block 240 32-Kword Block 239	74000H - 747FFFH		32-Kword Block 191	5C0000H - 5C7FFFH
H	32-Kword Block 239	738000H - 73FFFFH		32-Kword Block 191	5B8000H - 5BFFFFH
r	32-Kword Block 237	730000H - 737FFFH		32-Kword Block 189	5B0000H - 5B7FFFH
r	32-Kword Block 236	728000H - 72FFFFH		32-Kword Block 188	5A8000H - 5AFFFFH
	32-Kword Block 235	720000H - 727FFFH		32-Kword Block 187	5A0000H - 5A7FFFH
L	32-Kword Block 234	718000H - 71FFFFH		32-Kword Block 186	598000H - 59FFFFH
	32-Kword Block 233	710000H - 717FFFH		32-Kword Block 185	590000H - 597FFFH
- 1	32-Kword Block 232	708000H - 70FFFFH		32-Kword Block 184	588000H - 58FFFFH

PLANE5: 16 Mbit PLANE4: 24 Mbit

Figure 2.3. Memory Map (Bottom Parameter, Plane 4 and Plane 5)

LHF12F17

9

Table 3. Identifier Codes and OTP Address for Read Operation

	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000Н	00B0H	1
Device Code	Device Code	0001H	0011H	1
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	2, 3
Code	Block is Locked	Block Address	$DQ_0 = 1$	2, 3
	Block is not Locked-Down	+ 2	$DQ_1 = 0$	2, 3
	Block is Locked-Down		$DQ_1 = 1$	2, 3
OTP	OTP Lock	0080Н	OTP-LK	1, 4
	OTP	0081-0088H	OTP	1, 5

NOTES:

SHARP

- $1.\ A_{22}$ - A_{16} must be the address within the plane to which the Read Identifier Codes/OTP command (90H) has been written.
- 2. Block Address = The beginning location of a block address within the plane to which the Read Identifier Codes/OTP command (90H) has been written.
- 3. DQ₁₅-DQ₂ are reserved for future implementation.
- 4. OTP-LK=OTP Block Lock configuration.
- 5. OTP=OTP Block data.

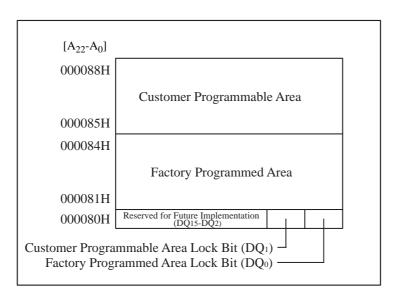


Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

11 LHF12F17

Table 4. Bus Operation^(1, 2)

Mode	Notes	RST#	CE#	OE#	WE#	Address	DQ ₁₅₋₀	RY/BY# (8)
Read Array	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	X	D _{OUT}	High Z
Output Disable		V _{IH}	V _{IL}	V _{IH}	V _{IH}	X	High Z	X
Standby		V_{IH}	V _{IH}	X	X	X	High Z	X
Reset	3	V_{IL}	X	X	X	X	High Z	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 3	See Table 3	High Z
Read Query	6,7	V_{IH}	V_{IL}	V_{IL}	V _{IH}	X	D _{OUT}	High Z
Read Status Register	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	X	D _{OUT}	X
Write	4,5,6	V _{IH}	V _{IL}	V _{IH}	V _{IL}	X	D _{IN}	X

- 1. Refer to DC Characteristics for V_{IL} or V_{IH} voltages.
- 2. X can be V_{IL} or V_{IH} for control pins and addresses.
 3. RST# at GND±0.2V ensures the lowest power consumption.
- 4. Command writes involving block erase, full chip erase, (page buffer) program or OTP program are reliably executed when V_{CC}=2.7V-3.3V.

 5. Refer to Table 5 for valid D_{IN} during a write operation.
- 6. Never hold OE# low and WE# low at the same timing.
- 7. Query code = Common Flash Interface (CFI) code.
- 8. RY/BY# is V_{OL} when the WSM (Write State Machine) is executing internal block erase, full chip erase, (page buffer) program or OTP program algorithms. It is High Z during when the WSM is not busy, in block erase suspend mode (with program and page buffer program inactive), (page buffer) program suspend mode, or reset mode.

	Bus		First Bus Cycle			Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	PA	FFH			
Read Identifier Codes/OTP	≥ 2	4	Write	PA	90H	Read	IA or OA	ID or OD
Read Query	≥ 2	4	Write	PA	98H	Read	QA	QD
Read Status Register	2		Write	PA	70H	Read	PA	SRD
Clear Status Register	1		Write	PA	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	5,9	Write	X	30H	Write	X	D0H
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥ 4	5,7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	8,9	Write	PA	ВОН			
Block Erase and (Page Buffer) Program Resume	1	8,9	Write	PA	D0H			
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH
OTP Program	2	9	Write	OA	СОН	Write	OA	OD

Table 5. Command Definitions⁽¹¹⁾

- 1. Bus operations are defined in Table 4.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
 - X=Any valid address within the device.
 - PA=Address within the selected plane.
 - IA=Identifier codes address (See Table 3).
 - QA=Query codes address.
 - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
 - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command.
 - OA=Address of OTP block to be read or programmed (See Figure 3).
- 3. ID=Data read from identifier codes. (See Table 3).
 - QD=Data read from query database.
 - SRD=Data read from status register. See Table 9.1, Table 9.2 for a description of the status register bits.
 - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - N-1=N is the number of the words to be loaded into a page buffer.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code and the data within OTP block (See Table 3).
 - The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH} .
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.

- 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H).
- 8. If the program operation in one plane is suspended and the erase operation in other plane is also suspended, the suspended program operation will be resumed first.
- 9. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP#/ACC is V_{IL} . When WP#/ACC is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
- 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

14

SHARP

		(2)			
State	WP#/ACC	DQ ₁ ⁽¹⁾	$DQ_0^{(1)}$	State Name	Erase/Program Allowed (2)
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

Table 6. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

NOTES:

- DQ₀=1: a block is locked; DQ₀=0: a block is unlocked.
 DQ₁=1: a block is locked-down; DQ₁=0: a block is not locked-down.
- 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.
- 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#/ACC=0) or [101] (WP#/ACC=1), regardless of the states before power-off or reset operation.
- 4. When WP#/ACC is driven to $V_{\rm IL}$ in [110] state, the state changes to [011] and the blocks are automatically locked.
- 5. OTP (One Time Program) block has the lock function which is different from those described above.

Current State				Result after Lock Command Written (Next State)				
State	WP#/ACC	DQ ₁	DQ_0	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾		
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾		
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]		
[011]	0	1	1	No Change	No Change	No Change		
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾		
[101]	1	0	1	No Change	[100]	[111]		
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾		
[111]	1	1	1	No Change	[110]	No Change		

Table 7. Block Locking State Transitions upon Command Write⁽⁴⁾

- 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.
- 2. When the Set Block Lock-Down Bit command is written to the unlocked block (DQ $_0$ =0), the corresponding block is locked-down and automatically locked at the same time.
- 3. "No Change" means that the state remains unchanged after the command written.
- 4. In this state transitions table, assumes that WP#/ACC is not changed and fixed V_{IL} or V_{IH} .

15

Current State Result after WP#/ACC Transition (Next State) Previous State DQ_1 DQ_0 WP#/ACC WP#/ACC= $0 \rightarrow 1^{(1)}$ WP#/ACC= $1 \rightarrow 0^{(1)}$ State [000] 0 0 0 [100] [001] 0 0 [101] $[110]^{(2)}$ [110] 0 [011] 1 1 Other than [111] $[110]^{(2)}$ [100] 1 0 0 [000] 1 0 1 [101] [001] [110] 1 1 0 $[011]^{(3)}$ [111] [011]

Table 8. Block Locking State Transitions upon WP#/ACC Transition⁽⁴⁾

NOTES:

SHARP

- 1. "WP#/ACC=0 \rightarrow 1" means that WP#/ACC is driven to V_{IH} and "WP#/ACC=1 \rightarrow 0" means that WP#/ACC is driven to V_{IL}.
- 2. State transition from the current state [011] to the next state depends on the previous state.

 3. When WP#/ACC is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
- 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

LHF12F17 16

Table 9.1.	Status	Register	Definition
------------	--------	----------	------------

GWSMS	GBESS	GBEFCES	GPBPOPS	GWPACCS	GPBPSS	GDPS	R
15	14	13	12	11	10	9	8
PWSMS	GBESS	GBEFCES	GPBPOPS	GWPACCS	GPBPSS	GDPS	R
7	6	5	4	3	2	1	0

NOTES:

SR.7 = PLANE WRITE STATE MACHINE STATUS (PWSMS)

- 1 = Ready
- 0 = Busy

SR.6 = GLOBAL BLOCK ERASE SUSPEND STATUS (GBESS)

- 1 = Block Erase Suspended
- 0 = Block Erase in Progress/Completed

SR.5 = GLOBAL BLOCK ERASE AND FULL CHIP ERASE STATUS (GBEFCES)

- 1 = Error in Block Erase or Full Chip Erase
- 0 = Successful Block Erase or Full Chip Erase

SR.4 = GLOBAL (PAGE BUFFER) PROGRAM AND OTP PROGRAM STATUS (GPBPOPS)

- 1 = Error in (Page Buffer) Program or OTP Program
- 0 = Successful (Page Buffer) Program or OTP Program

SR.3 = GLOBAL WP#/ACC STATUS (GWPACCS)

- $1 = V_{CCO} + 0.4V < WP\#/ACC < 9.0V Detect,$ Operation Abort
- 0 = WP#/ACCOK

SR.2 = GLOBAL (PAGE BUFFER) PROGRAM SUSPEND STATUS (GPBPSS)

- 1 = (Page Buffer) Program Suspended
- 0 = (Page Buffer) Program in Progress/Completed

SR.1 = GLOBAL DEVICE PROTECT STATUS (GDPS)

- 1 = Erase or Program Attempted on a Locked Block, Operation Abort
- 0 = Unlocked

Status Register indicates the status of the WSM (Write State Machine). However, SR.7 indicates the status of WSM in each plane. Even if the SR.7 is "1", the WSM may be occupied by the other plane.

In the plane to which the command is issued, Check SR.7 or RY/BY# to determine block erase, full chip erase, (page buffer) program or OTP program completion. SR.6 - SR.1 are invalid while SR.7="0".

If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit attempt, an improper command sequence was entered.

SR.3 does not provide a continuous indication of WP#/ACC level. The WSM interrogates and indicates the WP#/ACC level only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. SR.3 is not guaranteed to report accurate feedback when WP#/ ACC≠V_{ACCH}.

SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status.

 $SR.0 = RESERVED \ FOR \ FUTURE \ ENHANCEMENTS \ (R) \ \Big|_{SR.0} \ is \ reserved \ for \ future \ use \ and \ should \ be \ masked \ out$ when polling the status register.

Table 9.2. Status Register Definition (Continued)

SR.15 = GLOBAL WRITE STATE MACHINE STATUS (GWSMS)

- 1 = Ready
- 0 = Busy

SR.14 = GLOBAL BLOCK ERASE SUSPEND STATUS (GBESS)

- 1 = Block Erase Suspended
- 0 = Block Erase in Progress/Completed

SR.13 = GLOBAL BLOCK ERASE AND FULL CHIP ERASE STATUS (GBEFCES)

- 1 = Error in Block Erase or Full Chip Erase
- 0 = Successful Block Erase or Full Chip Erase

SR.12 = GLOBAL (PAGE BUFFER) PROGRAM AND OTP PROGRAM STATUS (GPBPOPS)

- 1 = Error in (Page Buffer) Program or OTP Program
- 0 = Successful (Page Buffer) Program or OTP Program

SR.11 = GLOBAL WP#/ACC STATUS (GWPACCS)

- $1 = V_{CCQ} + 0.4V < WPP\#/ACC < 9.0V Detect,$ Operation Abort
- 0 = WP#/ACC OK

SR.10 = GLOBAL (PAGE BUFFER) PROGRAM SUSPEND STATUS (GPBPSS)

- 1 = (Page Buffer) Program Suspended
- 0 = (Page Buffer) Program in Progress/Completed

SR.9 = GLOBAL DEVICE PROTECT STATUS (GDPS)

- 1 = Erase or Program Attempted on a Locked Block, Operation Abort
- 0 = Unlocked

SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

Status Register SR.15-SR.9 indicates the status of the WSM.

Check SR.15 or RY/BY# to determine block erase, full chip erase, (page buffer) program or OTP program completion. SR.14 - SR.9 are invalid while SR.15="0".

If both SR.13 and SR.12 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit attempt, an improper command sequence was entered.

SR.11 does not provide a continuous indication of WP#/ACC level. The WSM interrogates and indicates the WP#/ACC level only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. SR.11 is not guaranteed to report accurate feedback when WP#/ $ACC \neq V_{ACCH}$.

SR.9 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status.

SR.8 is reserved for future use and should be masked out when polling the status register.

Toble 10	Extended	Ctotura	Dagistar	Definition
Table 10.	Extellueu .	Status	Kegister	Definition

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
SMS	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

XSR.15-8 = RESERVED FOR FUTUREENHANCEMENTS (R)

XSR.7 = STATE MACHINE STATUS (SMS)

1 = Page Buffer Program available

0 = Page Buffer Program not available

XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not.

XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register.

1 Electrical Specifications

1.1 Absolute Maximum Ratings*

Operating Temperature

HARP

During Read, Erase and Program ...-40°C to +85°C (1)

Storage Temperature

During under Bias.....-40°C to +85°C During non Bias....-65°C to +125°C

Voltage On Any Pin (except V_{CC}, V_{CCO} and WP#/ACC)

.....-0.5V to V_{CCQ} +0.5V $^{(2)}$

 V_{CC} and V_{CCO} Supply Voltage -0.2V to +3.7V $^{(2)}$

WP#/ACC Supply Voltage -0.2V to +10.3V (2, 3, 4)

Output Short Circuit Current 100mA (5)

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

- 1. Operating temperature is for extended temperature product defined by this specification.
- 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} , V_{CCQ} and WP#/ACC pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is $V_{CC}+0.5V$ which, during transitions, may overshoot to $V_{CC}+2.0V$ for periods <20ns.
- 3. Maximum DC voltage on WP#/ACC may overshoot to +11.0V for periods <20ns.
- 4. WP#/ACC erase/program voltage is normally 2.7V-3.3V. Applying 9.0V-10.0V to WP#/ACC during erase/program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. WP#/ACC may be connected to 9.0V-10.0V for a total of 80 hours maximum.
- 5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T_A	-40	+25	+85	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.3	V	1
I/O Supply Voltage	V_{CCQ}	2.7	3.0	3.3	V	1
WD#/ACCVIII I II I I I C I I	V_{IL}	-0.2		0.4	V	
WP#/ACC Voltage when Used as a Logic Control	V _{IH}	2.4		V _{CCQ} + 0.4	V	1
WP#/ACC Supply Voltage	V _{ACCH}	9.0	9.5	10.0	V	1, 2
Main Block Erase Cycling: WP#/ACC=V _{IL} or V _{IH}		100,000			Cycles	
Parameter Block Erase Cycling: WP#/ACC=V _{IL} or V _{IH}		100,000			Cycles	
Main Block Erase Cycling: WP#/ACC=V _{ACCH} , 80 hrs.				1,000	Cycles	
Parameter Block Erase Cycling: WP#/ACC=V _{ACCH} , 80 hrs.				1,000	Cycles	
Maximum WP#/ACC hours at VACCH				80	Hours	

- 1. See DC Characteristics tables for voltage range-specific specification.
- 2. Applying WP#/ACC=9.0V-10.0V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to WP#/ACC=9.0V-10.0V is not allowed and can cause damage to the device.

1.2.1 Capacitance (1) (T_A=+25°C, f=1MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C_{IN}	V _{IN} =0.0V		4	7	pF
WP#/ACC Input Capacitance	C _{IN}	V _{IN} =0.0V		18	22	pF
Output Capacitance	C _{OUT}	V _{OUT} =0.0V		6	10	pF

NOTE:

HARP

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

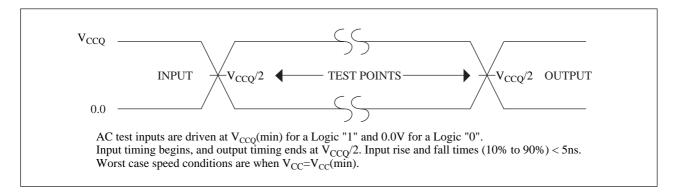


Figure 4. Transient Input/Output Reference Waveform for V_{CC} =2.7V-3.3V

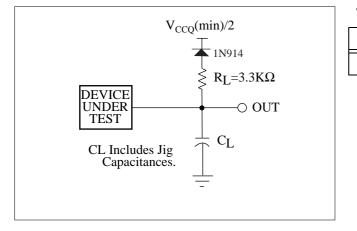


Figure 5. Transient Equivalent Testing Load Circuit

Table 11. Test Configuration Capacitance Loading Value

Test Configuration	$C_L(pF)$
V _{CC} =2.7V-3.3V	50

1.2.3 DC Characteristics

$V_{CC} = 2.7V - 3.3V$

Symbol	Param	eter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I_{LI}	Input Load Current		1	-1.0		+1.0	μΑ	V _{CC} =V _{CC} Max.,
I_{LO}	Output Leakage Current		1	-1.0		+1.0	μΑ	V _{CCQ} =V _{CCQ} Max., V _{IN} /V _{OUT} =V _{CCQ} or GND
I_{CCS}	V _{CC} Standby Curren	t	1,7,8		9	40	μА	$V_{CC} = V_{CC} Max.,$ $CE \# = RST \# =$ $V_{CCQ} \pm 0.2V,$ $WP \# / ACC = V_{CCQ} \text{ or }$ GND
I_{CCAS}	V _{CC} Automatic Current	Power Savings	1,3,7		9	40	μА	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#/ACC=V _{CCQ} or GND
I_{CCD}	V _{CC} Reset Current		1,7		9	40	μΑ	RST#=GND±0.2V
I	Average V _{CC} Read Current Normal Mode		1,6,7		20	30	mA	V _{CC} =V _{CC} Max., CE#=V _{IL} ,
I _{CCR}	Average V _{CC} Read Current Page Mode	8 Word Read	1,6,7		5	10	mA	OE#=V _{IH} , f=5MHz
T	V (Daga Buffar) D	brogram Current	1,4,6,7		20	60	mA	WP#/ACC=V _{IL} or V _{IH}
I_{CCW}	V _{CC} (Page Buffer) P	Togram Current	1,4,6,7		10	20	mA	WP#/ACC=V _{ACCH}
ī	V _{CC} Block Erase,		1,4,6,7		10	30	mA	WP#/ACC=V _{IL} or V _{IH}
I_{CCE}	Full Chip Erase Curi	rent	1,4,6,7		4	10	mA	WP#/ACC=V _{ACCH}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) P Block Erase Suspend		1,2,6,7		10	200	μΑ	CE#=V _{IH}
I _{ACCS} I _{ACCR}	WP#/ACC Standby	or Read Current	1,5,6,7		2	5	μА	WP#/ACC≤V _{CC}
I_{ACCW}	WP#/ACC (Page	Buffer) Program	1,4,5,6,7		2	5	μA	WP#/ACC=V _{IL} or V _{IH}
¹ACCW	Current		1,4,5,6,7		10	30	mA	WP#/ACC=V _{ACCH}
Legg	WP#/ACC Block Erase,		1,4,5,6,7		2	5	μΑ	WP#/ACC=V _{IL} or V _{IH}
I _{ACCE}	Full Chip Erase Current		1,4,5,6,7		5	15	mA	WP#/ACC=V _{ACCH}
Lagres	WP#/ACC (Page Bu	ffer) Program	1,5,6,7		2	5	μΑ	WP#/ACC=V _{IL} or V _{IH}
I _{ACCWS}	Suspend Current		1,5,6,7		10	200	μΑ	WP#/ACC=V _{ACCH}
Lagra	WP#/ACC Block	Erase Suspend	1,5,6,7		2	5	μΑ	WP#/ACC=V _{IL} or V _{IH}
I _{ACCES}	Current		1,5,6,7		10	200	μΑ	WP#/ACC=V _{ACCH}

DC Characteristics (Continued)

$V_{CC} = 2.7V - 3.3V$

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
V_{IL}	Input Low Voltage	5	-0.4		0.4	V	
V _{IH}	Input High Voltage	4	2.4		V _{CCQ} + 0.4	V	
V _{OL}	Output Low Voltage	4,8			0.2	V	$V_{CC}=V_{CC}Min.,$ $V_{CCQ}=V_{CCQ}Min.,$ $I_{OL}=100\mu A$
V _{OH}	Output High Voltage	4	V _{CCQ} -0.2			V	$\begin{split} &V_{CC} {=} V_{CC} Min., \\ &V_{CCQ} {=} V_{CCQ} Min., \\ &I_{OH} {=} {-} 100 \mu A \end{split}$
V _{ACCH}	WP#/ACC during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations		9.0	9.5	10.0	V	
V_{LKO}	V _{CC} Lockout Voltage		1.5			V	

NOTES:

- 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V, V_{CCQ} =3.0V and T_A =+25°C unless V_{CC} is specified.
- 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW} . If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} .
- 3. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.
- 4. Sampled, not 100% tested.
- 5. Applying 9.5V±0.5V to WP#/ACC provides fast erasing or fast programming mode. In this mode, WP#/ACC is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.

Applying $9.5V\pm0.5V$ to WP#/ACC during erase/program can only be done for a maximum of 1,000 cycles on each block. WP#/ACC may be connected to $9.5V\pm0.5V$ for a total of 80 hours maximum.

- 6. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.
- 7. For all pins other than those shown in test conditions, input level is V_{CCO} or GND.
- 8. Includes RY/BY#.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

V_{CC} =2.7V-3.3V, T_{A} =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		75		ns
t _{AVQV}	Address to Output Delay			75	ns
t _{ELQV}	CE# to Output Delay	3		75	ns
t _{APA}	Page Address Access Time			25	ns
t_{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
$t_{\rm EHQZ},t_{\rm GHQZ}$	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t_{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns
t _{AVEL} , t _{AVGL}	Address Setup to CE#, OE# Going Low for Reading Status Register	4, 6	10		ns
t _{ELAX} , t _{GLAX}	Address Hold from CE#, OE# Going Low for Reading Status Register	5, 6	10		ns
t _{EHEL} , t _{GHGL}	CE#, OE# Pulse Width High for Reading Status Register	6	20		ns

- 1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
- 2. Sampled, not 100% tested.
- 3. OE# may be delayed up to t_{ELQV}—t_{GLQV} after the falling edge of CE# without impact to t_{ELQV}.

 4. Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of CE# or OE# (whichever goes low last).

 5. Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of CE# or OE# (whichever goes low last).
- 6. Specifications t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX} and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations.

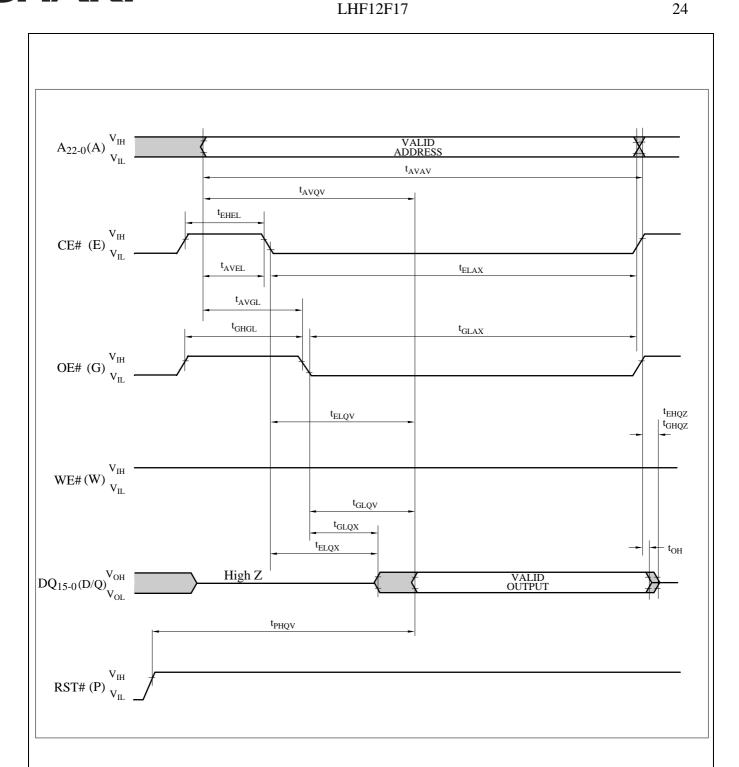


Figure 6. AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes, OTP Block or Query Code

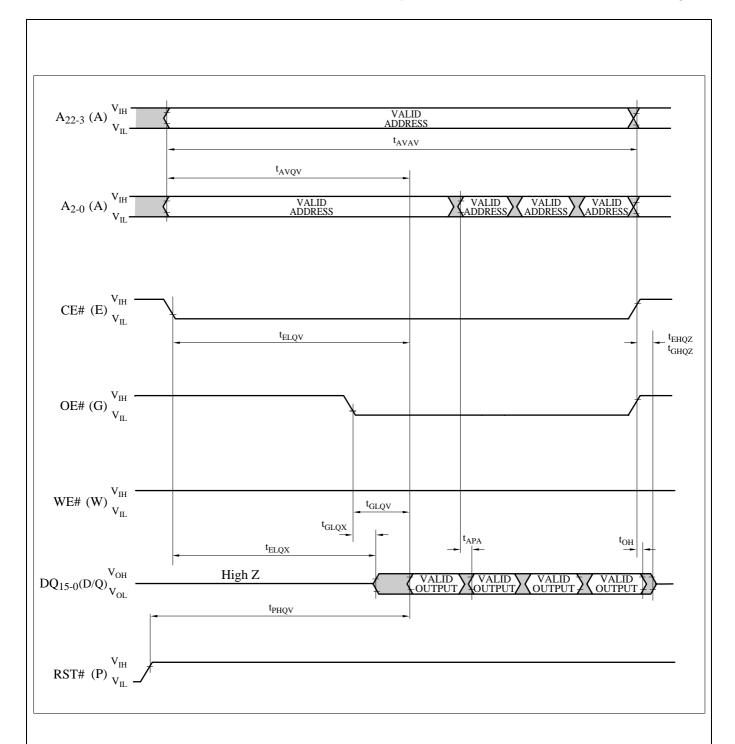


Figure 7. AC Waveform for Asynchronous 4-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

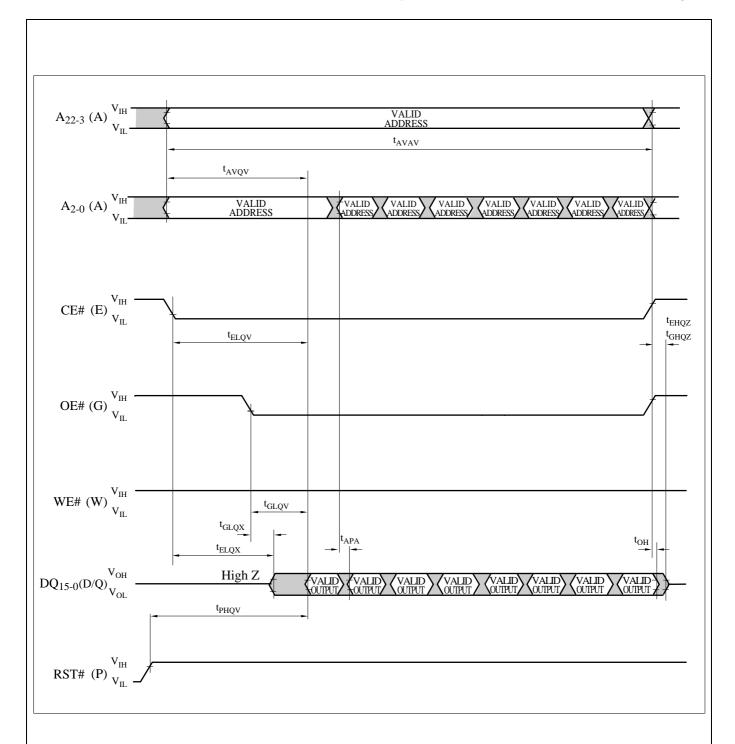


Figure 8. AC Waveform for Asynchronous 8-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

1.2.5 AC Characteristics - Write Operations^{(1), (2)}

V_{CC} =2.7V-3.3V, T_A =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		75		ns
t _{PHWL} (t _{PHEL})	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	CE# (WE#) Setup to WE# (CE#) Going Low		0		ns
t _{WLWH} (t _{ELEH})	WE# (CE#) Pulse Width	4	50		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	7	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to WE# (CE#) Going High	7	40		ns
t _{WHEH} (t _{EHWH})	CE# (WE#) Hold from WE# (CE#) High		0		ns
$t_{WHDX} (t_{EHDX})$	Data Hold from WE# (CE#) High		0		ns
t _{WHAX} (t _{EHAX})	Address Hold from WE# (CE#) High		0		ns
t _{WHWL} (t _{EHEL})	WE# (CE#) Pulse Width High	5	25		ns
t (t)	WP#/ACC High Setup to WE# (CE#) WP#/ACC=VIH	3	0		
$t_{SHWH}(t_{SHEH})$	Going High WP#/ACC=V _{ACCH}	3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	WP#/ACC High Hold from Valid SRD, RY/BY# High Z	3	0		ns
t _{WHR0} (t _{EHR0})	WE# (CE#) High to SR.7 Going "0"	3, 6		t _{AVQV} +50	ns
$t_{\mathrm{WHRL}} (t_{\mathrm{EHRL}})$	WE# (CE#) High to RY/BY# Going Low	3		100	ns

NOTES:

HARP

- 1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
- 2. A write operation can be initiated and terminated with either CE# or WE#.
- 3. Sampled, not 100% tested.
- 4. Write pulse width (twp) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, twp=twlwH=teleH=twleH=telwH.
- 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling edge of CE# or WE# (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.

 6. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVQV}+100ns.
- 7. Refer to Table 5 for valid address and data for block erase, full chip erase, (page buffer) program, OTP program or lock bit configuration.

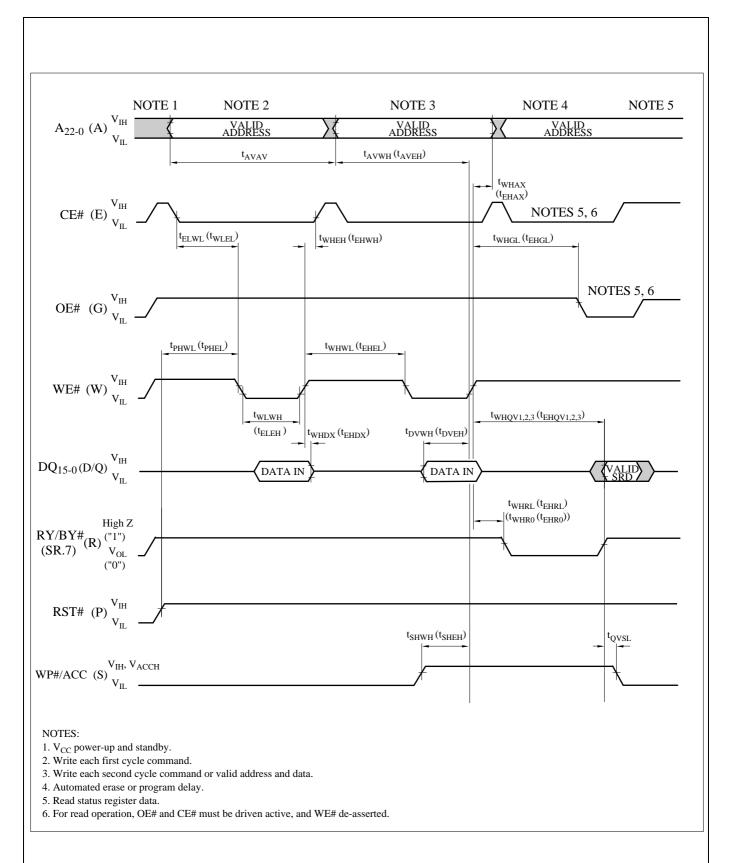


Figure 9. AC Waveform for Write Operations

1.2.6 Reset Operations

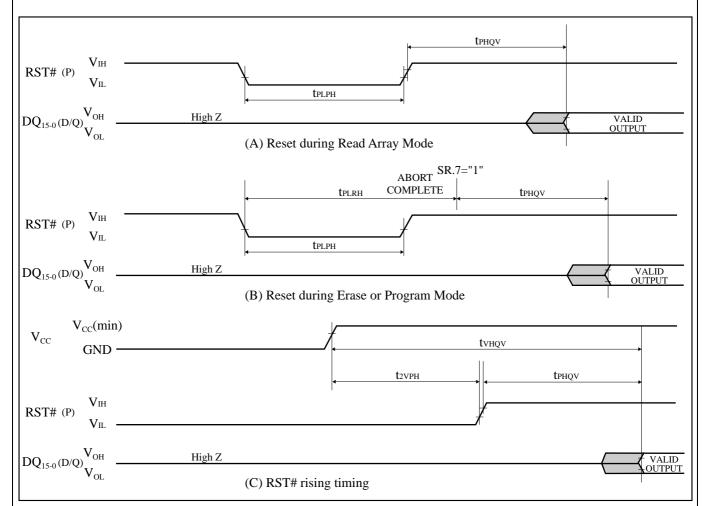


Figure 10. AC Waveform for Reset Operations

Reset AC Specifications (V_{CC} =2.7V-3.3V, T_A =-40°C to +85°C)

Symbol	Parameter	Notes	Min.	Max.	Unit
$t_{\rm PLPH}$	RST# Low to Reset during Read (RST# should be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program	1, 3, 4		22	μs
t _{2VPH}	V _{CC} 2.7V to RST# High	1, 3, 5	100		ns
t _{VHQV}	V _{CC} 2.7V to Output Delay	3		1	ms

- 1. A reset time, t_{PHQV} , is required from the later of SR.7 (RY/BY#) going "1" (High Z) or RST# going high until outputs are valid. Refer to AC Characteristics Read-Only Operations for t_{PHQV} .
- 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.
- 3. Sampled, not 100% tested.
- 4. If RST# asserted while a block erase, full chip erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.
- 5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance⁽³⁾

$$V_{CC}$$
=2.7V-3.3V, T_{A} =-40°C to +85°C

Symbol	Parameter	Notes	Page Buffer Command is Used or not Used	WP#/ACC=V _{IL} or V _{IH} (In System)			WP#/ACC=V _{ACCH} (In Manufacturing)			Unit
·				Min.	Typ.(1)	Max. ⁽²⁾	Min.	Typ.(1)	Max. ⁽²⁾	
two	4-Kword Parameter Block	2	Not Used		0.05	0.3		0.04	0.12	S
t_{WPB}	Program Time	2	Used		0.03	0.12		0.02	0.06	S
two	32-Kword Main Block	2	Not Used		0.38	2.4		0.31	1.0	S
t_{WMB}	Program Time	2	Used		0.24	1.0		0.17	0.5	S
t _{WHQV1} /	Word Program Time	2	Not Used		11	200		9	185	μs
t_{EHQV1}		2	Used		7	100		5	90	μs
$t_{\mathrm{WHOV1}}/$ t_{EHOV1}	OTP Program Time	2	Not Used		36	400		27	185	μs
t _{WHQV2} / t _{EHQV2}	4-Kword Parameter Block Erase Time	2	-		0.5	4		0.4	4	s
t _{WHQV3} / t _{EHQV3}	32-Kword Main Block Erase Time 2		-		0.9	5		0.8	5	S
	Full Chip Erase Time	2			240	1400		200	1400	S
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command		-	500			500			μs

- 1. Typical values measured at V_{CC} =3.0V, WP#/ACC=3.0V or 9.5V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.
- 2. Excludes external system-level overhead.
- 3. Sampled, but not 100% tested.
- 4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1" or RY/BY# going High Z.
- 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

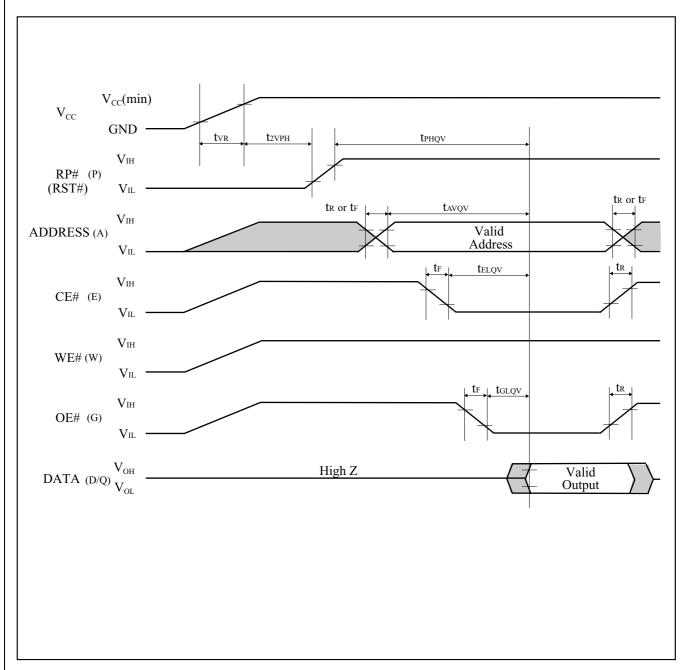


Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{VR}	V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time	1, 2		1	μs/V
t_{F}	Input Signal Fall Time	1, 2		1	μs/V

- 1. Sampled, not 100% tested.
- 2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

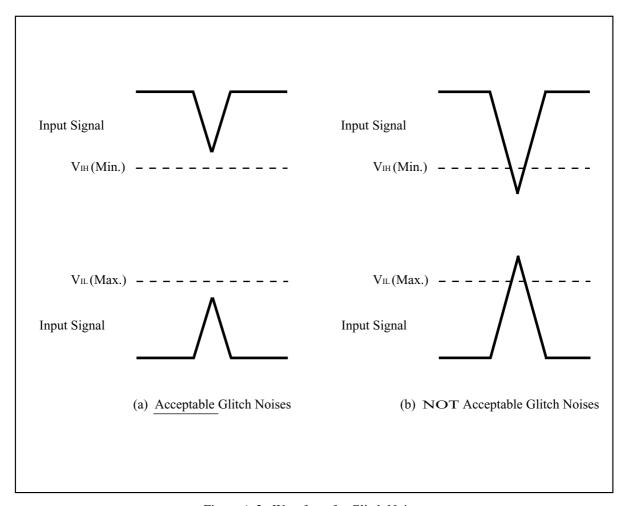
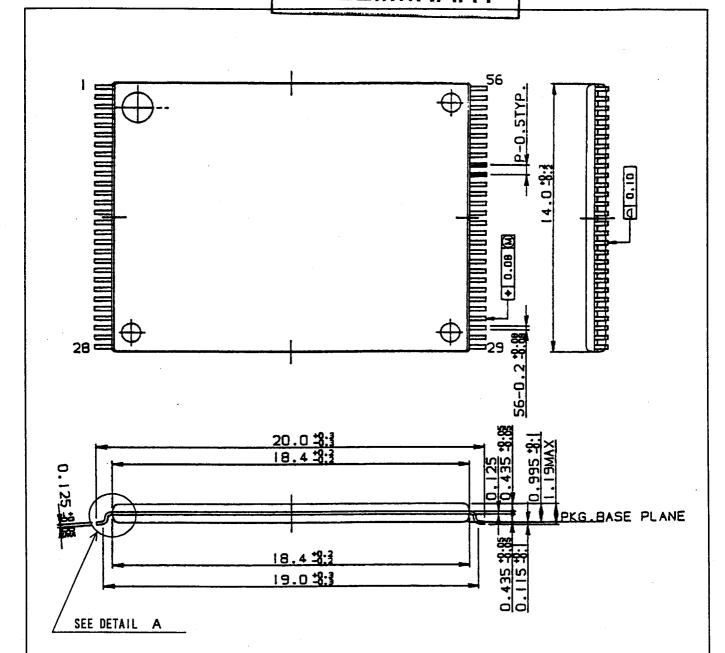
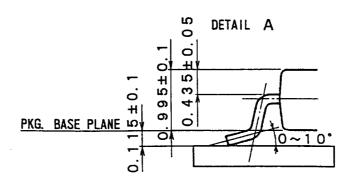


Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION $^{(1)}$


Document No.	Document Name				
AP-001-SD-E	Flash Memory Family Software Drivers				
AP-006-PT-E	Data Protection Method of SHARP Flash Memory				
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit				


NOTE:

1. International customers should contact their local SHARP or distribution sales office.

SHARP

PRELIMINARY

名称		IJ	-ド仕上	TIN-LEAD	備考	プラスチックパッケージ外形寸法は、パリを含まないものとする。
NAME	TSOP56-P-142) LEA	D FINISH	PLATING	NOTE	Plastic body dimensions do not include burr
			単位			of resin.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

Fast Info: (1) 800-833-9437

www.sharpsma.com

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd.
28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:**

No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk Shenzhen Representative Office:

Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China

Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819